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ABSTRACT: Model-based building extractidinom aerial images has been an intensive reseapit in the field

of digital photogrammetry since the last decadeseBaon our previous research work, the principl€aistructive
Solid Geometr{yCSG) is applied to model various buildings. Eadiiding is represented by a combination of 3D
primitives and each primitive is associated witlsed of shape and pose parameters. Building recmtisin is
implemented by adjusting the model parameters tomibdel with images. We proposed Laast-squares
Model-image Fitting(LSMIF) algorithm to obtain the optimal fit betweemodel and images. In this paper, the
performance of LSMIF is investigated. First, thaneergence rate and pull-in range of the algoritsranalyzed.
Then, how to use constraints to increase the cgewee rate is introduced. Finally, 10 sets rea dadre tested to
assess the theoretical accuracy of parameter detgion. In order to assess the empirical accuridieyresults are
also compared with manually measured data usingnatytical plotter. This study reveals that thechion of
LAMIF is table and can generate qualified 3D infation of building comparable to manually measurathd

1. INTRODUCTION

3D spatial information is essential for a wild rangf applications, such as city planning, architeetdesigning,
tourist guiding, or personal navigating system.héligh each application requires diverse spatiariméation,
buildings are the very required objects in comm@iil¢h, 1996). To efficiently extract buildings froaerial
images, several full-automated or semi-automategraaghes have been proposed by experts both in
photogrammetry and computer vision domains (Forstb@99; Griuin, 2000). Model-based building extiatti
extracting buildings by fitting pre-defined volumetmodels with images, has been recognized asngirzing
approach to efficient building extraction that abble implemented in practice (Brawet al, 1995; Chapmaret al,
1992; Lang and Fdorstner, 1996; Veldhuis, 1998).

Model-based building extraction relies on a modedge fitting algorithm to obtain the optimal fittheen model
and images. Attempts to solve the problem of madelge fitting date back to the work of Sester akbdsther
(Sester and Forstner, 1989). By fitting projecteztied to image, the transformation parameters afilding model
are determined using a clustering algorithm folldwey a robust estimation of model parameters. Phidding
research work has marked an important step towasdefrbased building extraction (MBBE), although the
algorithm is restricted to fit a model to singleaige rather than multiple images. Concurrently dgped in the
field of computer vision for model-based visionwa (Lowe, 1991) proposed a least-squares modelarfitgng

to solve for projection and model parameters thitbest fit a 3D model to matching 2D image feasirLowe’s
study set up the fundamental theory of the leastiszs model-image fitting (LSMIF) for generic applions. This
rigorous fitting algorithm has been recognized deewn to deal with MBBE (Veldhuis, 1998; Vosselmd®999).
However, to apply LSMIF for MBBE, we need to taitbe generic LSMIF theory to meet the specificaians of
building modeling and model parameters. Vosselmaadh ¥eldhuis (Vosselman and Veldhuis, 1999) modified
Lowe’s algorithm to improve pull-in range, but thdid not clearly define the building models and ftigng
functions.

Based on our previous research work (Tseng and VW2&a§; Wang and Tseng, 2001; Chetial, 2001; Lin et al,
2001), the principle of constructive solid geomei®sG) is applied to model various buildings. Eacimitive is
associated with a set of model parameters thatbeacategorized into shape and pose parametersdiigyil
reconstruction is implemented by adjusting the rhpdeameters to fit model with images. Therefore L&SMIF
algorithm was proposed to fit a primitive to therresponding building part in the image, which isdxhon the
minimization of the squares sum of the distancemfthe edge pixels extracted from images to theesponding
edge of the projected primitive.

The motivation of this study is to evaluate thefpenance of the LSMIF algorithm. Ten various builgé, which
can be represented by a combination of box andegaloif primitives, were constructed using the athon for
testing. Based on the test data, we first invetighhe convergence rate and pull-in range to see dften the
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algorithm can deliver correct results. In ordeimcrease the convergence rate, the method to add sonstraints
into the system is also introduced. The accurasgsmsnent is performed in both the theoretical amgirgcal ways.
Theoretical accuracy can be estimated by the Epsires theory and empirical accuracy is obtairyecbimparing
the results with manually measured data using atyteal plotter.

2. LEAST-SQUARESMODEL-IMAGE FITTING
2.1 Definition of Primitives

A primitive is a pre-defined simple solid model,ialhdetermines the intrinsic geometric propertaofobject part,
and is associated with a set of parameters thabearategorized into shape parameters and posegiars. The
shape parameters describe the shape size of théiyei e.g., a box primitive has three shape patams: length
(), width @), and height If). Changing the values of shape parameters elamghte primitive in the three
dimensions and keeps its shape as a rectangularBzwh primitive would be associated with differshiape
parameters, e.g., a gable-roof house primitive dragdditional shape parameter — roof’s heigh}. (The pose
parameters describe the position and attitude miraitive in the object space. It is adequate te 8granslation
parameters (4, dY, dZ) to depict the position and 3 rotation parametgits(t) aroundY-axis, swing §) around
X-axis, and azimutha) aroundZ-axis to represent orientation of a primitive. Haere walls of the building are
supposed to be vertical in most circumstances,titheand swing angles can be omitted. Unlike thepsh
parameters, the four pose parameters are suitabéd! kinds of primitives. Figure 1 shows the paeders of a box
primitive, theX’-Y’-Z' coordinate system is the model space, anXteZ coordinate system is the object space.
The shape parameters of a gable-roof house prardtig illustrated in Figure 2.

A v, Vo

[ F, D
N E
Fo Vs T Ve

h

—_— ————

Figure 1: Shape and pose parameters of a box prémit Figure 2: Shape parameters of a gable-rdofifive.

A model can be described by a polyhedral structlodyhedron is a composite of faces and each fansists of
several vertices. For example, the box primitivljol is a cubic solid in the model space, congi§ts faces I,
F», F3, Fa4, Fs, Fg) and 8 verticesv(y, Vo, Vs, Va4, Vs, Ve, V7, Vg). The model coordinates of the vertices age(0,0,0),
v»=(1,0,0), va=(1,1,0), v,=(0,1,0), vs=(0,0,1), vs=(1,0,1), v;=(1,1,1), ve=(0,1,1). The gable-roof house primitive
shown in Figure 2 can be described in the same arann

2.2 Coordinate Systems

The algorithm performs the fitting in the photo odinate system. A primitive, however, is definedtle model
space. It is necessary to transform a primitivenfrmodel space to object space by introducing afsshape and
pose parameters, and then to project the objecehwmto the photo coordinate system with the kn@xterior
orientation parameters. On the other hand, edgelgpextracted from the images should be transfortoethe
photo coordinate system for matching. Figure 3 shéive transformation steps of a box from model hotp
coordinate system and the edge pixels from imagdéto coordinate system.
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Figure 3: Coordinate systems involved in the figtaigorithm and their relationship.

The primitive defined in the model space is a semphit solid, e.g. a box primitive is a unit cub&ieh width,
length, and height are all equal to 1. The shapanpaters will elongate or shorten the box to theew size, and
the pose parameters will rotate and move the bdkdccorrect attitude and position in the objecicep Table 1
lists the change of coordinates of the 8 vertiE@sh vertex in the object space can be project#uetphoto by the
collinearity condition equations with the known exbr orientation elements:



x=—F - (X = X) + 1, (Y =Yo) +15(Z2 - Z,) | ——f .r21(x_Xo)+r22(Y_Yo)+r23(Z_Zo) Q)

r31(X - Xo) + I’32(Y _Yo) + I’33(Z - Zo), r31(x - Xo) + r:-xz(Y_Yo) + I’33(Z - Zo)

where & y) are the photo coordinates of a vertex
X, Y,2 are the object coordinates of a vertex
(X0, Yo, Zp) are the object coordinates of the perspectivéecen
f is the focal length of the camera
ri, 1o 13, Mo1,...  are coefficients of the rotation matrix definedthe exterior orientation

Table 1: Vertex coordinates from model space tectgpace.

\Vertex No Model _Spac Multiply After Rotation 'After Translation )
Coordinate|Shape Paramete (Object Space Coordinate)
Vi 0,0,0) (0,0,0) (0,0,0) Xd dv, d2)
A (1,0, 0) W, 0, 0) (wvcosy, wsina, 0) fwcosi+dX, wsino+dY, dZ)
V3 (1,1,0) w, 1, 0) fwcosu-Isina, wsinatlcosy, 0) (wcosi-Isina+dX, wsine+lcosi+dY, dZ)
\ (0,1,0) (0J, 0) (dsing, Icosy, 0) (dsino+dX, Icosi+dY, dZ)
Vs 0,0,1) (0, Oh) (0, 0,h) (dX, dY, h+d2)
Ve (1,0,1) W, 0,h) (wcosz, wsina, h) (wcosi+dX, wsine+dY, h+dZ)
vy (1,1,1) W, 1, h) (wecosi-Ising, wsina+lcosy, h)|(wcosi-Isina+dX, wsina+lcosi+dY, h+dZ)
Vg (0,1,1) (0], h) (-Isina, Icos, h) (-Isino+dX, Icosi+dY, h+dZ)

2.3 Edge Feature Extraction

The transformed model edges are supposed to fitthvét edge pixels extracted from the corresponotirages. In
this paper, edge pixels are extracted using therittign of the polymorphic feature extraction modgEX)
developed by Forstner and Fuchs (Forstner, 199dh<u1995, Fuchs and Fdorstner, 1995), which caraetxt
interest points, edges, and regions simultaneotibly.extraction module consists of three stepsC{a$sification
of the pixels into the three feature types, [(Bralization of the features, (3) y

Approximationof lines and blob boundaries by analytic functidsg providing
the known interior orientation parameters of eanhde, edge pixels extracted

by FEX can be transformed to the photo coordingsées. v, E)glt_r&ted ;i)xel
/’ i ir Jti

The user interface of our semi-automatic approélolwa the operator to resize, "1% d,

rotate, and move a model to fit the correspondinglding images %

approximately. This procedure would offer a seapproximate values for the 62’75» 0'“}9
shape and pose parameters, so that the discrepatwgen the projected edges 4
of the initial primitive and the extracted edgegdsxshould be small. Therefore, > X

it is reasonable that the fitting algorithm uselydhe edge pixels distributed irfigure 4 Distance from the extract

a buffer zone of the projected edges shown as Eigur pixel to the projected ed
proj 9 9 and the effective buffer zone.

2.4 Objective Function and L east-squar es Adjustment

That the fitting condition we are looking for istprojected edge exactly falls on the building edgehe image. It
means that the distandgeis considered as a discrepancy and is expected #@ro. Therefore, the objective of the
fitting function is to minimize the distance betwethe extracted edge pixels and the projected edgev,. The
projected edge is composed of the projected vertigg;, y;) andvx(X,, ¥2). Suppose there is an extracted edge
pixel T;(X;, Vs) located inside the buffer, the distard;drom the pointT; to the edger,v, can be formulated as the
following equation:

4 - (% = ¥a)% + (X = %)Ya + (Yo%~ ¥1X2)|  where i is the index of extracted edge pixels. (2)
\/(X1 - Xz)2 + (yl - 3/2)2

The photo coordinates(x;, Y1) andvy(X,, ¥») are functions of the shape, pose, and exteriertation parameters,

where only the exterior-orientation parameterskai@vn. E.g., a box primitive will have 7 unknowns:l, h, a, dX,

dY, and &. Every extracted edge pixel in the buffer may faam objective function as Equation (2). Sirg;e

represents the discrepancy between model and irttagjebjective of fitting is to minimize the squarsum of the

distances:
Yd?= Y[F(w,I, h a, dX, dY, dZ)]*>min. 3)

Appling the least-squares adjustment to the fitfiumgction, the distancd; is considered as the residual errars
Therefore, Equation (2) should be rewritten asofed:

O+ = Fi(w, I, h, o, dX, dY, d2) 4)

Equation (4) is nonlinear and the unknowns canmotd#lculated directly. In order to solve the unknewising
Newton-Rapheson method, Equation (4) should berdiftiated with respect to the unknown parametieenT it
may be expressed in the linearized form as:

0+




v, :[OF,J AW+(aFij Al +(8Fij Ah+[aF‘J Aa+[aFi J AdX+(aF‘J AdY+(aF‘j AdZ+F, ®)
ow J, a ), oh ), oa ), odX ), ody ), adz),
In Equation (5)F is the approximation of the functidh evaluated by the given initial value of the 7 uokms -

shape and pose paramete{@j J (ﬁ J , etc., are the partial derivatives Bf with respect to the indicated
ow )y La ),

unknowns evaluated at the initial approximatiomsw, Al, Ah, etc., are increments of the unknowns applied to

the initial approximations.

Each extracted edge pixel can form such an equédiathe corresponding projected edge. Therefokasible edge
may have a group of observation equations. Alheke equations can be summarized and expresseaé byatrix
form: V=AX-L, whereA is the matrix of partial derivatives addis the matrix of increments of shape and pose
parameters. Once an edge pixel is added, it add® & matrixA, V, andL. A box primitive, which has up to 9
edges are visible, may have 9 groups of equatimnarfe single photo. It is easy to solve the mafrby the matrix
operation:X=(A"PA)'ATPL. If the weights of all unknowns are assumed egBais an identical matrix. The
solution of X is the increments of shape and pose paramete@nyifelement of matrix does not meet the
requirement of the threshold, adding the incrementthe previous parameters to regenerate the revixm and

L, then implement the adjustment again. The itematimntinues until the increments converge belowthihesholds
or diverge beyond the limits. When the iteratiomwerges, the primitive parameters are determineldtiae model

is fitted to the image. If a building is visible onultiple photos, it can provide more observatignations. These
redundant observation equations sometimes areusaful especially when an edge is occluded on dwa¢opbut
visible on another photo. All of the observatiomsdifferent photos join the least-squares adjustrteisolve the
model parameters simultaneously

3. CORRECTNESSAND ACCURACY ASSESSMENT

In order to study the performance of the LSMIF ailfpon, we choose 10 various buildings in the NCKampus
from the digitized aerial photos. Except buildingsImodeled by one single primitive, the others @mposed of
two or more than two primitives. For accuracy assest, an experienced photogrammetric operator uneadsll
of the visible building corners.

3.1 Pull-in Range Test

The pull-in range is the range from the initialu&lto the convergent value of each parameternlteataken as a
reference of the maximum error that the fittingdtion can tolerate, or the least accuracy theainitalue should
achieve. The part 1 of building 5 (Figure 5) wassan for the pull-in range test. A box primitivesilected to fit
the building part, and the shape and pose parasnétere been solved by LSMIF. The pull-in-range atte
parameter is tested on by one by adding a cert@iouat of error onto the correct number until theration
divergent. The pull-in ranges of the 6 parametegsshown in Figure 6.
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Figure 5: The building and the box primitive foetpull-in range test. Figure 6: The pull-ingarof the each parameter.

Due to the influence of irrelevant information tetbuilding or self-occlusion, the pull-in rangesild be case by
case. In this case, one can find that the two petensidZ andh, have better pull-in ranges. It is because the 4
edges on the roof are extracted clearly and suledlyssvhich provides a good constraint to the paeterh,
especially in the positive direction. There arenalsbottom edges are clearly visible in the lefotoh which
provides the constraint @z andh both in the negative direction. The pull-in rard@lZ in positive direction is not
as well at is due to the noise pixels extracted on the régiot 2 of the same building (lower-right in thiegbos).
The parametedX has a narrowest pull-in range among other parameleis because some trees occlude the
bottom edge on the right side of the building, #imel boundary of trees is extracted as edge pi¥élen thedX
increases, the right edge of the box primitive id fitted to the boundary of trees and resultshi wrong
solution.

3.2 Correctness Analysis and Constraints

Because the LSMIF algorithm fits the model to thiracted edges in images, the correctness ofditliepends on
the correctness of the edge extraction. Any edgelpido not formed by the building may cause inedrfitting
results. Figure 7 illustrates some of these cir¢antes.



(a (b £ P '
Figure 7: Four examples of incorrect fitting resutiaused by (a)the texture of the roof, (b)the shadf the
building, (c)the balconies, and (d)the gable-reafidt symmetric.

There are two approaches to fix incorrect fittinghe first approach is to give a set of very acruiaitial
parameters with the use of a narrow buffer. Howeitanay not work if the real edge is occluded otbéguous.
Besides, the use of narrow buffer tends to cauddiESlivergent if the buffer does not cover the veahedge
pixels. The second approach is to add constraintiset LSMIF. If a certain parameter has been knéam other
data source, one can treat the parameter as anvatise and add an observation function to thetlegsares
adjustment. By raising the weight of the observatihe parameter will tends to be fixed. This ipezsally useful

in the situation of information loss. For exammhadows or other buildings have occluded the boddges of the
primitive. If the nearby ground height can be meaduthe parameter dfZ can be determined and fixed. Figure 8
shows an instance in which the bottom edges aisilite but the fitting can be carried out succelygtoy adding
constraints tch anddZ Therefore, the building can be extracted complethis is one of the great benefits that
make MBBE superior to the traditional stereo pdiptpoint measurement.

In the case study, the 10 buildings can be decoetbigo 23 building parts and each can be modethdreny box
or gable-roof primitives. The fitted primitive isqjected onto the images as a wire-frame for cmeckiable 2 lists
the checking results. The extraction of buildingvds incorrect because the bottom and the wall edgesimost
invisible. But this can be improved by introducitihg constraints oiZ andh into the LSMIF. The percentage of
correct results is about 89%, which proves thellfiéty of LSMIF.

Table 2: The correctness check of LSMIF.

Building |Part| Primitive | Vertex | LSMIF Results
ID ID Type |Numbel Correctincorrec
1 1 |Gable-roof 6 6 0
2 1 Box 4 4 0
2 Box 4 4 0
3 1 Box 5 5 0
2 Box 5 5 0
Figure 8: The fitting results with constraints. 4 1 Box 6 2 4
2 |Gable-roof 4 0 4
3.3 Accuracy Assessment 5 1 Box 4 4 0
2 Box 4 4 0
The fitting results have been compared with the umbn 1 Box 4 4 0
measurement data. For comparison, the 3D vertesdowdes 6 2 Box 4 4 0
of each primitive are derived from the shape andepo 7 1 |Gable-roof 6 6 0
parameters. After eliminating the incorrectly fittedges, the 1 Box 2 2 0
coordinate difference between LSMIF and the manpal 8 2 Box 2 2 0
measurement represents the empirical accuracytioigfi The 3 Box 2 1 1
mean values and standard deviations of the difte=rare 1 |Gable-roof 5 5 0
listed in Table 3. According to the standard déwia of the 2 | Box 4 4 0
differences, the empirical accuracy in each coatiwill be: 9 3 Box 4 2 2
33cm(X), 28cm(Y), and 103cm(Z). Figure 9 depict® th 4 Box 4 4 0
distribution of the differences on the X-Y planehel mean i ggi 2 2 8
values are close to zero, so that no systematiorerare 10 > Box 7 7 0
expected. The empirical accuracy in X-Y plane isutl0cm. 3 Box 2 2 0
AZ has a larger standard deviation because mosedfidgtiom Total % 85 11
edges of the buildings are invisible. Therefores #mpirical Percentage 88 549%1.46%

accuracy in 3D was downgraded to about 1m.



Table 3: The statistics of differences from manual 12
measurement to LSMIF resL 09 .
AX | AY | AZ |JaX?+AY? |VAX? + AY? 1+ AZ? 0 s ¢ o
Maximum (m) | 0.9830.723]3.034| 1.072 3.047 03 <,
Minimum (m) | -0.733-0.985-1.932]  0.045 0.138 IR F ¢
Average of T e & * <
Absolute Values (n)o.291 0.223|0.799| 0.397 0.942 03 . ® %. .Q P
Average (m) 0.1610.070[ 0.047| 0.397 0.942 05 * SN
Standard o AX
Deviation (m) |0-3294027741.0835  0.2400 0.6233 O s 0e oa 0r o 0r or os os b

4 CONCLUSIONS Figure 9: The error distribution on the X-Y plane.

A least-squares model-image fitting algorithm itraduced and evaluated for the use of model-bas@ditgy
extraction from aerial images. This algorithm iteraly fits the pre-defined primitive to the aeriphotos and
solves the optimal model parameters with knownrgiiion parameters of photos. It is able to usdipielphotos
simultaneously, which is helpful when some edgesvésible in one image and others are visible aghcond or
other image. By adding constraints, such as grdwight and roof height, the building can be enfirettracted
even its bottom is occluded. Furthermore, the LSkNXEacts buildings object by object, so that ittwdbbe more
efficient than point-by-point measurements.

The performance of the LSMIF algorithm is evaluatgdanalyzing the pull-in range of parameters,dbeectness
and the empirical accuracy of the fitting. In thdl{n range test, it shows that there is at l@as2m pull-in range
for each parameter in average. It means that tbeatqr does need to provide very accurate inipglraximation
of parameters for fitting in common situations. Aiting to the results of 10 study cases, the §tafgorithm is
functioning very well and efficient. The empiridadrizontal accuracy is comparable to manual measemés. The
vertical accuracy is low due to shadows and ocatusThe accuracy and reliability would be able éaroproved if
more overlapped photos are used or more constraietsntroduced. In general, the LSMIF deliverdségng
results and has a convincing potential to be agte MBBE.
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