




points with fixed interval. Each sample point would be treated 
as an observation in the LSMDF to solve the plane parameters 
as optimal fit. Fig. 4 depicts the flowchart of the plane fitting. 

 
Figure 4. The flowchart of plane fitting. 

Since the model has been manually fit, the bottom edges of the 
wireframe model should be close to the building’s boundary on 
the map. Benefited from the approximate fitting, the LSMDF 
iteratively pulls the model to the optimal fit instead of blindly 
searching for the solution. To avoid the disturbance of irrelevant 
sample points, only those points distributed within a specified 
buffer zone are adopted for fitting calculation. Figure 5 depicts 
the sample point Tij and a wbuffer wide buffer determined by an 
edge vmvn of the model. The suffix i is the index of edge line Li 
and j is the index of sample points. Filtering edge pixels with 
buffer is reasonable, because the discrepancies between the bot-
tom edges and the corresponding sample points should be small, 
as the model parameters have been fit approximately. However, 
the buffer size has to be carefully chosen because it will di-
rectly affect the convergence of the computation. 
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Figure 5. Buffer zone for fitting. 

The fitting condition we are looking for is that the model edge 
exactly falls on the building boundary on the map. In Eq.(1), 

the distance dij represents a discrepancy between a sample point 
Tij and its corresponding edge vmvn, which is expected to be 
zero. Therefore, the objective of the fitting function is to mini-
mize the squares sum of dij. Suppose an edge is composed of 
the vertices vm(xm, yn) and vn(xn, yn), and there is an edge pixel 
Tij(xij, yij) located inside the buffer. The distance dij from the 
point Tij to the edge vmvn can be formulated as the following 
equation: 
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The coordinates of vertices vm(xm, ym) and vn(xn, yn) are func-
tions of the unknown plan parameters. Therefore, dij will be a 
function of the plan parameters. Taking a box model for in-
stance, dij will be a function of w, l, α, dX, and dY, with the hy-
pothesis that a normal building rarely has a tilt angle (t) or 
swing angle (s). The least-squares solution for the unknown pa-
rameters can be expressed as: 

Σdij
2 = Σ[Fij  ( w, l, α, dX, dY)]2  → min.          (2) 

Eq.(2) is a nonlinear function with regard to the unknowns, so 
that the Newton’s method is applied to solve for the unknowns. 
The nonlinear function is differentiated with respect to the un-
knowns and becomes a linear function with regard to the in-
crements of the unknowns as follows: 
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    (3) 

in which, Fij0 is the approximation of the function Fij calculated 
with given approximations of the unknown parameters. Given a 
set of unknown approximations, the least-squares solution for 
the unknown increments can be solved, and the approximations 
are updated by the increments. Repeating this calculation, the 
unknown parameters can be solved iteratively. 

The linearized equations can be expressed as a matrix form: 
V=AX-L, where A is the matrix of partial derivatives; X is the 
vector of the increments; L is the vector of approximations; and 
V is the vector of residuals. The objective function actually can 
be expressed as q=VTV→min. For each iteration, X can be 
solved by the matrix operation: X=(ATA)-1ATL. The standard 
deviation of each increment can also be calculated as the accu-
racy index of the LSMDF. 

The objective of the height fitting is the building’s roof in the 
LiDAR data. As the distance from sample point to the edge is 
the observation function in the plane fitting, the observation 
function should be the distance from LiDAR point to the roof 
plane in the height fitting. The roof plane equation is composed 
of model parameters. However, the calculations of 3D fitting 
would be much more complicated than 2D. And it will also in-
crease the iteration number and the chance to divergence. Con-
sidering the efficiency and the practicality, we adopt an easier 
method for the height fitting in this paper. Since the plane pa-
rameters have been fit optimally, LiDAR points within the 
plane range are supposed to belong to the model. These points 
are then projected to a local 2D coordinate system which is de-
fined on the façade of the model. Fig. 6 illustrates the transfor-
mation of a ridge-roof building. Thus the observation function 
is simplified as the distance from 2D point to edge, similar to 
the plan fitting. 

Topographic 
Maps 

Approximate 
Plane Parameters 

Building 
Boundary 

Pre-Process 

Resample 

Sample Points 

Manual Fitting 

Optimal Plane 
Parameters 

Optimal Fitting 

3R

5R 

Data Process Example 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008 

 

683



   
Figure 6. Projection of the LiDAR points for height Fitting. 

4. EXPERIMENTS 

A small urban area of Taipei City about 500hectare is selected 
for testing. The 1/1000 scale digital topographic maps have 
been pre-proceeded to generate building polygons. The grid in-
terval of the corresponding DEM is 4m. The point density of 
LiDAR point cloud is about 10 points within 1m2, which is 
good enough to reconstruct normal building roofs. The aerial 
photos are taken by the Vexcel UltraCam D photogrammetric 
camera. The focal length is 101.4mm, the image size is 
7500*11500pixel, and the size of a pixel is 9*9µm. The average 
flight height is about 1930m, so the ground resolution is about 
0.17m/pixel. Meanwhile, we develop a PC program by C++ 
language to implement the proposed building reconstruction 
procedures. The interface is illustrated by Fig. 7. The operating 
sequences are as follow: (1) observe the topographic map in the 
left window and select the appropriate model; (2) click vertices 
v1, v2, and v3 in sequences on the topographic map to give initial 
parameters; (3) examine projections on photos and adjust the 
model parameters if needed; (4) click the Fitting button to im-
plement LSMDF of plane and height optimal fitting; (5) exam-
ine projections on photos and adjust the model parameters if 
needed; (6) output and save the model parameters. A model is 
usually reconstructed within a minute, but the time for a build-
ing depends on its complexity.  

 
Figure 7. The program interface of MBBR. 

  
Figure 8. A complex building model reconstructed by box and 

polyhedral prism models. 

Our system currently provides three kinds of model for recon-
structing most of the modern buildings: box, gable-roof, and 
polyhedral prism model. A building model is composed of sev-
eral primitive models. Fig. 8 shows an example of a complex 

building reconstructed by box and polyhedral prism models. 
For the whole test area, two operators worked for one week and 
totally reconstructed 4130 buildings. Fig. 9 shows a part of the 
reconstructed city model. We select 30 buildings for correctness 
and accuracy evaluation. These models are first evaluated in 
their shape with aerial and terrestrial photos by human eyes. 
The correctness rate is about 88.5%. Then, the vertices coordi-
nates of the 30 building models are calculated from model pa-
rameters and then compared to the photogrammetric and ground 
survey result. Table 1 lists the statistics of the coordinate differ-
ences. The larger X-Y differences most due to the mismatch 
point, while the larger Z differences most due to the parapets. 

 
Figure 9. A part of the reconstructed 3D building models. 

Resulting from our experiments, most of the modern buildings 
can be modeled smoothly, and fitting result achieves the photo-
grammetric accuracy. However, some of the buildings are ille-
gally reconstructed into an arbitrarily shape, which makes it dif-
ficult to be modeled by our pre-defined model. In that case, the 
building should be decomposed into several parts for fitting and 
then aggregate into one composite model. For some traditional 
Chinese architecture, it is very difficult to reconstruct their 
curvy eaves by our pre-defined model. Fig. 10 shows an exam-
ple, in which the building can only be reconstructed approxi-
mately. 

  
Figure 10. Curvy eaves can only be reconstructed approxi-

mately. 

5. CONCLUSIONS 

The floating model is proposed as a model-based building re-
construction approach, which is a flexible 3D measuring tool 

Coordinates Differences ∆X ∆Y ∆Z 
Average(m) 0.051 0.110 -0.0146 

Avg. of Absolute Values(m) 0.236 0.294 0.8816 
Std. Deviation (m) 0.2953 0.3490 1.1400 

Table 1. Statistics of coordinates differences. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008 

 

684



floating in the object space. This paper introduces one kind of 
its utilization for reconstructing models from different source 
data. Plan parameters are fit from topographic maps and height 
parameters are fit from LiDAR data and DEM. Aerial Photos 
are also used for examining and modifying. According to our 
case study of Taipei City, the procedure goes smoother and 
faster with the increase of operating experiences. Here are some 
characteristics of the proposed approach: 

1. For most of the normal buildings, floating model does 
increase efficiency than point-by-point measurement. 

2. The labour-consuming precise measurement is carried out 
by computer while the operator only needs to select 
model and approximately fit it. 

3. The inner constraints guarantees the geometric nature 
unchanged after reconstructing. 

4. It is possible to reconstruct the whole building even if a 
part of it is occluded. 

However, we also find some shortcomings of the model-based 
approach: 

1. A building could never be reconstructed correctly if there 
is no adequate primitive model. 

2. The decomposition of building needs practice and 
experience. 

3. It is difficult to implement the subtraction operation 
between two models. 

4. For those very complicated buildings, model-based 
approach will cost more time than data-based approach. 

Therefore, we suggest two further research objectives: (1) de-
signing more primitive models such as curvy plane. (2) analyz-
ing the topology and implement the Boolean operator among 
3D models. 
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